

lox: Concurrency Made Easy

Many programs are embaressingly parallel [https://en.wikipedia.org/wiki/Embarrassingly_parallel] and can gain large performance boost by simply parallelizing portions of the code. However, multithreading a program is still typically seen as a difficult task and placed at the bottom of the TODO list. lox aims to make it as simple and intuitive as possible to parallelize functions and methods in python. This includes both invoking functions, as well as providing easy-to-use guards for
shared resources.

lox provides a simple, shallow learning-curve toolset to implement multithreading or multiprocessing that will work in most projects. lox is not meant to be the bleeding edge of performance; for absolute maximum performance, you code will have to be more fine tuned and may benefit from python3’s builtin asyncio, greenlet, or other async libraries. lox’s primary goal is to provide that maximum concurrency performance in the least amount of time and the
smallest refactor.

A very simple example is as follows.

>>> import lox
>>>
>>> @lox.thread(4) # Will operate with a maximum of 4 threads
... def foo(x,y):
... return x*y
>>> foo(3,4)
12
>>> for i in range(5):
... foo.scatter(i, i+1)
-ignore-
>>> # foo is currently being executed in 4 threads
>>> results = foo.gather() # block until results are ready
>>> print(results) # Results are in the same order as scatter() calls
[0, 2, 6, 12, 20]

Features

	Multithreading: Powerful, intuitive multithreading in just 2 additional lines of code.

	Multiprocessing: Truly parallel function execution with the same interface as multithreading.

	Synchronization: Advanced thread synchronization, communication, and resource management tools.

Contents

	Installation
	Stable release

	From sources

	lox

	Examples
	Multithreading Requests

	Multiprocessing

	Obtaining a resource from a pool

	Block until threads are done

	One-Writer-Many-Reader

	FAQ

	Contributing

	Credits

	History

Indices and tables

	Index

	Module Index

	Search Page

Installation

Stable release

To install lox, run this command in your terminal:

$ pip install lox

This is the preferred method to install lox, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for lox can be downloaded from the Github repo [https://github.com/BrianPugh/lox].

You can either clone the public repository:

$ git clone git://github.com/BrianPugh/lox

Or download the tarball [https://github.com/BrianPugh/lox/tarball/master]:

$ curl -OL https://github.com/BrianPugh/lox/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

lox

Examples

Multithreading Requests

A typical usecase for lox is the following. Say you wanted to get the content
of websites from a list of URLs. The first naive implementation may look something
like the following.

>>> import urllib.request
>>> from time import time
>>> urls = ['http://google.com', 'http://bing.com', 'http://yahoo.com']
>>> responses = []
>>>
>>> def get_content(url):
... res = urllib.request.urlopen(url)
... return res.read()
>>>
>>> t_start = time()
>>> for url in urls:
... responses.append(get_content(url))
>>> t_diff = time() - t_start
>>> print("It took %.3f seconds to get 3 sites" % (t_diff,))
It took 2.942 seconds to get 3 sites

It’s nice, simple, and it just works. However, your computer is just idling while
waiting for a network response. With lox, you can just decorate the function you
want to add concurrency. We replace the direct calls to the function with func.scatter which will pass all the args and kwargs to the decorated function. Finally, when we need all the function results, we call func.gather() which will return a list of the outputs of the decorated function. The outputs are guarenteed to be in the same order that the scatter were called

>>> import lox
>>> import urllib.request
>>> from time import time
>>> urls = ['http://google.com', 'http://bing.com', 'http://yahoo.com']
>>>
>>> @lox.thread
... def get_content(url):
... res = urllib.request.urlopen(url)
... return res.read()
>>>
>>> t_start = time()
>>> for url in urls:
... get_content.scatter(url)
-ignore-
>>> responses = get_content.gather()
>>> t_diff = time() - t_start
>>> print("It took %.3f seconds to get 3 sites" % (t_diff,))
It took 0.928 seconds to get 3 sites

With minimal modifications, we now have a multithreaded application with
significant performance improvements.

Multiprocessing

>>> import lox
>>> from time import sleep
>>>
>>> @lox.process(2)
... def job(x):
... sleep(1)
... return 1
>>>
>>> t_start = time()
>>> for i in range(5):
... res = job(10)
>>> t_diff = time() - t_start
>>> print("Non-parallel took %.3f seconds" % (t_diff,))
Non-parallel took 5.007 seconds
>>>
>>> t_start = time()
>>> for i in range(5):
... job.scatter(10)
>>> res = job.gather()
>>> t_diff = time() - t_start
>>> print("Parallel took %.3f seconds" % (t_diff,))
Parallel took 0.062 seconds

Obtaining a resource from a pool

Imagine you have 4 GPUs that are part of a data processing pipeline, and the
GPUs perform the task disproportionally faster (or slower!) than the rest of the pipeline.
Below we have many threads fetching and processing data, but they need to share
the 4 GPUs for accelerated processing.

>>> import lox
>>>
>>> N_GPUS = 4
>>> gpus = [allocate_gpu(x) for x in range(N_GPUS)]
>>> idx_sem = lox.IndexSemaphore(N_GPUS)
>>>
>>> @lox.thread
... def process_task(url):
... data = get_data(url)
... data = preprocess_data(data)
... with idx_sem() as idx: # Obtains 0, 1, 2, or 3
... gpu = gpus[idx]
... result = gpu.process(data)
... result = postprocess_data(data)
... save_file(result)
>>>
>>> urls = ['http://google.com',]
>>> for url in urls:
... process_task.scatter(url)
>>> process_task.gather()

Block until threads are done

Imagine the following scenario:

A janitor needs to clean a restroom, but is not allowed to enter until
all people are out of the restroom. How do we implement this?

The easiest way is to use a lox.LightSwitch. The lightswitch pattern
creates a first-in-last-out synchronization mechanism.
The name of the pattern is inspired by people entering a
room in the physical world. The first person to enter the room turns
on the lights; then, when everyone is leaving, the last person to exit
turns the lights off.

>>> restroom_occupied = Lock()
>>> restroom = LightSwitch(restroom_occupied)
>>> res = []
>>> n_people = 5

A LightSwitch is most similar to a semaphore, but it automatically
acquires/releases a provided Lock when it’s internal counter
increments/decrements from 0. A LightSwitch can be acquired multiple times,
but must be released the same amount of times before the Lock gets released.

Here’s the janitor’s job:

>>> @lox.thread(1)
... def janitor():
... with restroom_occupied: # block until the restroom is no longer occupied
... res.append('j_enter')
... print("(%0.3f s) Janitor entered the restroom" % (time() - t_start,))
... sleep(1) # clean the restroom
... res.append('j_exit')
... print("(%0.3f s) Janitor exited the restroom" % (time() - t_start,))

Here are the people trying to enter the rest room:

>>> @lox.thread(n_people)
... def people(id):
... if id == 0: # Get the starting time of execution for display purposes
... global t_start
... t_start = time()
... with restroom: # block if a janitor is in the restroom
... res.append("p_%d_enter" % (id,))
... print("(%0.3f s) Person %d entered the restroom" % (time() - t_start, id,))
... sleep(1) # use the restroom
... res.append("p_%d_exit" % (id,))
... print("(%0.3f s) Person %d exited the restroom" % (time() - t_start, id,))

Lets start these people up:

>>> for i in range(n_people):
... people.scatter(i) # Person i will now attempt to enter the restroom
... sleep(0.6) # wait for 60% the time a person spends in the restroom
... if i==0: # While the first person is in the restroom...
... janitor_thread.start() # the janitor would like to enter. HOWEVER...
... print("(%0.3f s) Janitor Dispatched" % (time()-t_start))
>>> # Wait for all threads to finish
>>> people.gather()
>>> janitor.gather()

The results will look like:

Running Restroom Demo
(0.000 s) Person 0 entered the restroom
(0.061 s) Person 1 entered the restroom
(0.100 s) Person 0 exited the restroom
(0.122 s) Person 2 entered the restroom
(0.162 s) Person 1 exited the restroom
(0.182 s) Person 3 entered the restroom
(0.222 s) Person 2 exited the restroom
(0.243 s) Person 4 entered the restroom
(0.282 s) Person 3 exited the restroom
(0.343 s) Person 4 exited the restroom
(0.343 s) Janitor entered the restroom
(0.443 s) Janitor exited the restroom

Note that multiple people can be in the restroom.
If people kept using the restroom, the Janitor would never be able
to enter (technically known as thread starvation).
If this is undesired for your application, look at RWLock

One-Writer-Many-Reader

It’s common that many threads may be reading from a single resource, but a
single other thread may change the value of that resource.

If we used a LightSwitch as in the Janitor example above, we can see that the
writer (Janitor) may never get an opporunity to acquire the resource. A
RWLock solves this problem by blocking future threads from acquiring the
resource until the writer acquires and subsequently releases the resource.

>>> rwlock = lox.RWLock()

The janitor task would do something like:

>>> with rwlock('w'):
... # Perform resource write here

While the people task would look like

>>> with rwlock('r'):
... # Perform resource read here

FAQ

Q: Whats the difference between multithreading and multiprocessing?

A: Multithreading and Multiprocessing are two different methods to provide concurrency (parallelism) to your code.

Threading has low overhead for sharing resources between threads. Threads share the same heap, meaning global variables are easily accessible from each thread. However, at any given moment, only a single line of python is being executed, meaning if your code is CPU-bound, using threading will have the same performance (actually worse due to overhead) as not using threading.

Multiprocessing is basically several copies of your python code running at once, communicating over pipes. Each worker has it’s own python interpretter, it’s own stack, it’s own heap, it’s own everything. Any data transferred between your main program and the workers must first be serialized (using dill, a library very similar to pickle) passed over a pipe, then deserialized.

In short, if your project is I/O bound (web requests, reading/writing files, waiting for responses from compiled code/binaries, etc), threading is probably the better choice. However, if your code is computation bound, and if the libraries you are using aren’t using compiled backends that are already maxing out your CPU, multiprocessing might be the better option.

Q: Why not just use the built-in await ?

A: Trying to shove await into a project typically requires great care both in the code written and the packages used. Ontop of this, using await may require a substantial refactor of the layout of the code. The goal of lox is to require the smallest, least risky changes in your codebase.

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/BrianPugh/lox/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

lox could always use more documentation, whether as part of the
official lox docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/BrianPugh/lox/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up lox for local development.

	Fork the lox repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/lox.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv lox
$ cd lox/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 lox tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python >=3.6, and for PyPy. Check
https://travis-ci.org/BrianPugh/lox/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ py.test tests.test_lox

Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ bumpversion patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

Credits

Development Lead

	Brian Pugh <bnp117@gmail.com>

Contributors

None yet. Why not be the first?

History

0.9.0 (2020-11-25)

	tqdm support on lox.process.gather. See v0.8.0 release notes for usage.

0.8.0 (2020-11-25)

	tqdm support on lox.thread.gather
* Can be a bool:

>>> my_func.gather(tqdm=True)

	Can be a tqdm object:

>>> from tqdm import tqdm
>>> pbar = tqdm(total=100)
>>> for _ in range(100):
>>> my_func.scatter()
>>> my_func.gather(tqdm=pbar)

0.7.0 (2020-07-20)

	Complete rework of workers
+ Fix memory leaks

	Drop support for python3.5

	Drop support for chaining in favor of simpler codebase

0.6.3 (2019-07-30)

	Alternative fix for 0.6.2.

0.6.2 (2019-07-21)

	Update dependencies

	Fix garbage-collecting exclusiviity

0.6.1 (2019-07-21)

	Fix memory leak in lox.process.

0.6.0 (2019-07-21)

	lox.Announcement subscribe() calls now return another Announcement
object that behaves like a queue instead of an actual queue. Allows for
many-queue-to-many-queue communications.

	New Object: lox.Funnel. allows for waiting on many queues for a complete
set of inputs indicated by a job ID.

0.5.0 (2019-07-01)

	New Object: lox.Announcement. Allows a one-to-many thread queue with
backlog support so that late subscribers can still get all (or most recent)
announcements before they subscribed.

	New Feature: lox.thread scatter calls can now be chained together.
scatter now returns an int subclass that contains metadata to allow
chaining. Each scatter call can have a maximum of 1 previous scatter result.

	Documentation updates, theming, and logos

0.4.3 (2019-06-24)

	Garbage collect cached decorated object methods

0.4.2 (2019-06-23)

	Fixed multiple instances and successive scatter and gather calls to wrapped methods

0.4.1 (2019-06-23)

	Fixed broken workers and unit tests for workers

0.4.0 (2019-06-22)

	Semi-breaking change: lox.thread and lox.process now automatically pass
the object instance when decorating a method.

0.3.4 (2019-06-20)

	Print traceback in red when a thread crashes

0.3.3 (2019-06-19)

	Fix bug where thread in scatter of lox.thread double releases on empty queue

0.3.2 (2019-06-17)

	Fix manifest for installation from wheel

0.3.1 (2019-06-17)

	Fix package on pypi

0.3.0 (2019-06-01)

	Multiprocessing decorator. lox.pool renamed to lox.thread

	Substantial pytest bug fixes

	Documentation examples

	timeout for RWLock

0.2.1 (2019-05-25)

	Fix IndexSemaphore context manager

0.2.0 (2019-05-24)

	Added QLock

	Documentation syntax fixes

0.1.1 (2019-05-24)

	CICD test

0.1.0 (2019-05-24)

	First release on PyPI.

Index

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/lox_200w.png

_static/minus.png

_static/ajax-loader.gif

_static/plus.png

nav.xhtml

 Table of Contents

 		
 lox: Concurrency Made Easy

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 lox

 		
 Examples

 		
 Multithreading Requests

 		
 Multiprocessing

 		
 Obtaining a resource from a pool

 		
 Block until threads are done

 		
 One-Writer-Many-Reader

 		
 FAQ

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Deploying

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.9.0 (2020-11-25)

 		
 0.8.0 (2020-11-25)

 		
 0.7.0 (2020-07-20)

 		
 0.6.3 (2019-07-30)

 		
 0.6.2 (2019-07-21)

 		
 0.6.1 (2019-07-21)

 		
 0.6.0 (2019-07-21)

 		
 0.5.0 (2019-07-01)

 		
 0.4.3 (2019-06-24)

 		
 0.4.2 (2019-06-23)

 		
 0.4.1 (2019-06-23)

 		
 0.4.0 (2019-06-22)

 		
 0.3.4 (2019-06-20)

 		
 0.3.3 (2019-06-19)

 		
 0.3.2 (2019-06-17)

 		
 0.3.1 (2019-06-17)

 		
 0.3.0 (2019-06-01)

 		
 0.2.1 (2019-05-25)

 		
 0.2.0 (2019-05-24)

 		
 0.1.1 (2019-05-24)

 		
 0.1.0 (2019-05-24)

_static/up.png

_static/up-pressed.png

