
lox Documentation
Release 0.9.0

Brian Pugh

Sep 09, 2021





Contents

1 Features 3

2 Contents 5
2.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 lox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 FAQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Contributing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6 Credits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.7 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Indices and tables 17

i



ii



lox Documentation, Release 0.9.0

Many programs are embaressingly parallel and can gain large performance boost by simply parallelizing portions of
the code. However, multithreading a program is still typically seen as a difficult task and placed at the bottom of the
TODO list. lox aims to make it as simple and intuitive as possible to parallelize functions and methods in python. This
includes both invoking functions, as well as providing easy-to-use guards for shared resources.

lox provides a simple, shallow learning-curve toolset to implement multithreading or multiprocessing that will work in
most projects. lox is not meant to be the bleeding edge of performance; for absolute maximum performance, you code
will have to be more fine tuned and may benefit from python3’s builtin asyncio, greenlet, or other async libraries.
lox’s primary goal is to provide that maximum concurrency performance in the least amount of time and the smallest
refactor.

A very simple example is as follows.

>>> import lox
>>>
>>> @lox.thread(4) # Will operate with a maximum of 4 threads
... def foo(x,y):
... return x*y
>>> foo(3,4)
12
>>> for i in range(5):
... foo.scatter(i, i+1)
-ignore-
>>> # foo is currently being executed in 4 threads
>>> results = foo.gather() # block until results are ready
>>> print(results) # Results are in the same order as scatter() calls
[0, 2, 6, 12, 20]

Contents 1

https://en.wikipedia.org/wiki/Embarrassingly_parallel


lox Documentation, Release 0.9.0

2 Contents



CHAPTER 1

Features

• Multithreading: Powerful, intuitive multithreading in just 2 additional lines of code.

• Multiprocessing: Truly parallel function execution with the same interface as multithreading.

• Synchronization: Advanced thread synchronization, communication, and resource management tools.

3



lox Documentation, Release 0.9.0

4 Chapter 1. Features



CHAPTER 2

Contents

2.1 Installation

2.1.1 Stable release

To install lox, run this command in your terminal:

$ pip install lox

This is the preferred method to install lox, as it will always install the most recent stable release.

If you don’t have pip installed, this Python installation guide can guide you through the process.

2.1.2 From sources

The sources for lox can be downloaded from the Github repo.

You can either clone the public repository:

$ git clone git://github.com/BrianPugh/lox

Or download the tarball:

$ curl -OL https://github.com/BrianPugh/lox/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

5

https://pip.pypa.io
http://docs.python-guide.org/en/latest/starting/installation/
https://github.com/BrianPugh/lox
https://github.com/BrianPugh/lox/tarball/master


lox Documentation, Release 0.9.0

2.2 lox

2.3 Examples

2.3.1 Multithreading Requests

A typical usecase for lox is the following. Say you wanted to get the content of websites from a list of URLs. The first
naive implementation may look something like the following.

>>> import urllib.request
>>> from time import time
>>> urls = ['http://google.com', 'http://bing.com', 'http://yahoo.com']
>>> responses = []
>>>
>>> def get_content(url):
... res = urllib.request.urlopen(url)
... return res.read()
>>>
>>> t_start = time()
>>> for url in urls:
... responses.append(get_content(url))
>>> t_diff = time() - t_start
>>> print("It took %.3f seconds to get 3 sites" % (t_diff, ))
It took 2.942 seconds to get 3 sites

It’s nice, simple, and it just works. However, your computer is just idling while waiting for a network response. With
lox, you can just decorate the function you want to add concurrency. We replace the direct calls to the function with
func.scatter which will pass all the args and kwargs to the decorated function. Finally, when we need all
the function results, we call func.gather() which will return a list of the outputs of the decorated function. The
outputs are guarenteed to be in the same order that the scatter were called

>>> import lox
>>> import urllib.request
>>> from time import time
>>> urls = ['http://google.com', 'http://bing.com', 'http://yahoo.com']
>>>
>>> @lox.thread
... def get_content(url):
... res = urllib.request.urlopen(url)
... return res.read()
>>>
>>> t_start = time()
>>> for url in urls:
... get_content.scatter(url)
-ignore-
>>> responses = get_content.gather()
>>> t_diff = time() - t_start
>>> print("It took %.3f seconds to get 3 sites" % (t_diff, ))
It took 0.928 seconds to get 3 sites

With minimal modifications, we now have a multithreaded application with significant performance improvements.

6 Chapter 2. Contents



lox Documentation, Release 0.9.0

2.3.2 Multiprocessing

>>> import lox
>>> from time import sleep
>>>
>>> @lox.process(2)
... def job(x):
... sleep(1)
... return 1
>>>
>>> t_start = time()
>>> for i in range(5):
... res = job(10)
>>> t_diff = time() - t_start
>>> print("Non-parallel took %.3f seconds" % (t_diff, ))
Non-parallel took 5.007 seconds
>>>
>>> t_start = time()
>>> for i in range(5):
... job.scatter(10)
>>> res = job.gather()
>>> t_diff = time() - t_start
>>> print("Parallel took %.3f seconds" % (t_diff, ))
Parallel took 0.062 seconds

2.3.3 Obtaining a resource from a pool

Imagine you have 4 GPUs that are part of a data processing pipeline, and the GPUs perform the task disproportionally
faster (or slower!) than the rest of the pipeline. Below we have many threads fetching and processing data, but they
need to share the 4 GPUs for accelerated processing.

>>> import lox
>>>
>>> N_GPUS = 4
>>> gpus = [allocate_gpu(x) for x in range(N_GPUS)]
>>> idx_sem = lox.IndexSemaphore(N_GPUS)
>>>
>>> @lox.thread
... def process_task(url):
... data = get_data(url)
... data = preprocess_data(data)
... with idx_sem() as idx: # Obtains 0, 1, 2, or 3
... gpu = gpus[idx]
... result = gpu.process(data)
... result = postprocess_data(data)
... save_file(result)
>>>
>>> urls = ['http://google.com', ]
>>> for url in urls:
... process_task.scatter(url)
>>> process_task.gather()

2.3.4 Block until threads are done

Imagine the following scenario:

2.3. Examples 7



lox Documentation, Release 0.9.0

A janitor needs to clean a restroom, but is not allowed to enter until all people are out of the restroom. How do we
implement this?

The easiest way is to use a lox.LightSwitch. The lightswitch pattern creates a first-in-last-out synchronization mech-
anism. The name of the pattern is inspired by people entering a room in the physical world. The first person to enter
the room turns on the lights; then, when everyone is leaving, the last person to exit turns the lights off.

>>> restroom_occupied = Lock()
>>> restroom = LightSwitch( restroom_occupied )
>>> res = []
>>> n_people = 5

A LightSwitch is most similar to a semaphore, but it automatically acquires/releases a provided Lock when it’s
internal counter increments/decrements from 0. A LightSwitch can be acquired multiple times, but must be released
the same amount of times before the Lock gets released.

Here’s the janitor’s job:

>>> @lox.thread(1)
... def janitor():
... with restroom_occupied: # block until the restroom is no longer occupied
... res.append('j_enter')
... print("(%0.3f s) Janitor entered the restroom" % ( time() - t_start,))
... sleep(1) # clean the restroom
... res.append('j_exit')
... print("(%0.3f s) Janitor exited the restroom" % ( time() - t_start,))

Here are the people trying to enter the rest room:

>>> @lox.thread(n_people)
... def people( id ):
... if id == 0: # Get the starting time of execution for display purposes
... global t_start
... t_start = time()
... with restroom: # block if a janitor is in the restroom
... res.append("p_%d_enter" % (id,))
... print("(%0.3f s) Person %d entered the restroom" % ( time() - t_start, id,
→˓))
... sleep(1) # use the restroom
... res.append("p_%d_exit" % (id,))
... print("(%0.3f s) Person %d exited the restroom" % ( time() - t_start, id,
→˓))

Lets start these people up:

>>> for i in range(n_people):
... people.scatter(i) # Person i will now attempt to enter the
→˓restroom
... sleep(0.6) # wait for 60% the time a person spends in the
→˓restroom
... if i==0: # While the first person is in the restroom...
... janitor_thread.start() # the janitor would like to enter. HOWEVER...
... print("(%0.3f s) Janitor Dispatched" % (time()-t_start))
>>> # Wait for all threads to finish
>>> people.gather()
>>> janitor.gather()

The results will look like:

8 Chapter 2. Contents



lox Documentation, Release 0.9.0

Running Restroom Demo
(0.000 s) Person 0 entered the restroom
(0.061 s) Person 1 entered the restroom
(0.100 s) Person 0 exited the restroom
(0.122 s) Person 2 entered the restroom
(0.162 s) Person 1 exited the restroom
(0.182 s) Person 3 entered the restroom
(0.222 s) Person 2 exited the restroom
(0.243 s) Person 4 entered the restroom
(0.282 s) Person 3 exited the restroom
(0.343 s) Person 4 exited the restroom
(0.343 s) Janitor entered the restroom
(0.443 s) Janitor exited the restroom

Note that multiple people can be in the restroom. If people kept using the restroom, the Janitor would never be able to
enter (technically known as thread starvation). If this is undesired for your application, look at RWLock

2.3.5 One-Writer-Many-Reader

It’s common that many threads may be reading from a single resource, but a single other thread may change the value
of that resource.

If we used a LightSwitch as in the Janitor example above, we can see that the writer (Janitor) may never get an
opporunity to acquire the resource. A RWLock solves this problem by blocking future threads from acquiring the
resource until the writer acquires and subsequently releases the resource.

>>> rwlock = lox.RWLock()

The janitor task would do something like:

>>> with rwlock('w'):
... # Perform resource write here

While the people task would look like

>>> with rwlock('r'):
... # Perform resource read here

2.4 FAQ

Q: Whats the difference between multithreading and multiprocessing?

A: Multithreading and Multiprocessing are two different methods to provide concurrency (parallelism) to your code.

Threading has low overhead for sharing resources between threads. Threads share the same heap, meaning global
variables are easily accessible from each thread. However, at any given moment, only a single line of python is being
executed, meaning if your code is CPU-bound, using threading will have the same performance (actually worse due to
overhead) as not using threading.

Multiprocessing is basically several copies of your python code running at once, communicating over pipes. Each
worker has it’s own python interpretter, it’s own stack, it’s own heap, it’s own everything. Any data transferred
between your main program and the workers must first be serialized (using dill, a library very similar to pickle)
passed over a pipe, then deserialized.

2.4. FAQ 9



lox Documentation, Release 0.9.0

In short, if your project is I/O bound (web requests, reading/writing files, waiting for responses from compiled
code/binaries, etc), threading is probably the better choice. However, if your code is computation bound, and if
the libraries you are using aren’t using compiled backends that are already maxing out your CPU, multiprocessing
might be the better option.

Q: Why not just use the built-in await ?

A: Trying to shove await into a project typically requires great care both in the code written and the packages used.
Ontop of this, using await may require a substantial refactor of the layout of the code. The goal of lox is to require the
smallest, least risky changes in your codebase.

2.5 Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

2.5.1 Types of Contributions

Report Bugs

Report bugs at https://github.com/BrianPugh/lox/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants
to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” and “help wanted” is open to
whoever wants to implement it.

Write Documentation

lox could always use more documentation, whether as part of the official lox docs, in docstrings, or even on the web
in blog posts, articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/BrianPugh/lox/issues.

If you are proposing a feature:

• Explain in detail how it would work.

10 Chapter 2. Contents

https://github.com/BrianPugh/lox/issues
https://github.com/BrianPugh/lox/issues


lox Documentation, Release 0.9.0

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

2.5.2 Get Started!

Ready to contribute? Here’s how to set up lox for local development.

1. Fork the lox repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/lox.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

$ mkvirtualenv lox
$ cd lox/
$ python setup.py develop

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other
Python versions with tox:

$ flake8 lox tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

2.5.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python >=3.6, and for PyPy. Check https://travis-ci.org/BrianPugh/lox/pull_
requests and make sure that the tests pass for all supported Python versions.

2.5. Contributing 11

https://travis-ci.org/BrianPugh/lox/pull_requests
https://travis-ci.org/BrianPugh/lox/pull_requests


lox Documentation, Release 0.9.0

2.5.4 Tips

To run a subset of tests:

$ py.test tests.test_lox

2.5.5 Deploying

A reminder for the maintainers on how to deploy. Make sure all your changes are committed (including an entry in
HISTORY.rst). Then run:

$ bumpversion patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

2.6 Credits

2.6.1 Development Lead

• Brian Pugh <bnp117@gmail.com>

2.6.2 Contributors

None yet. Why not be the first?

2.7 History

2.7.1 0.9.0 (2020-11-25)

• tqdm support on lox.process.gather. See v0.8.0 release notes for usage.

2.7.2 0.8.0 (2020-11-25)

• tqdm support on lox.thread.gather * Can be a bool:

>>> my_func.gather(tqdm=True)

– Can be a tqdm object:

>>> from tqdm import tqdm
>>> pbar = tqdm(total=100)
>>> for _ in range(100):
>>> my_func.scatter()
>>> my_func.gather(tqdm=pbar)

12 Chapter 2. Contents

mailto:bnp117@gmail.com


lox Documentation, Release 0.9.0

2.7.3 0.7.0 (2020-07-20)

• Complete rework of workers + Fix memory leaks

• Drop support for python3.5

• Drop support for chaining in favor of simpler codebase

2.7.4 0.6.3 (2019-07-30)

• Alternative fix for 0.6.2.

2.7.5 0.6.2 (2019-07-21)

• Update dependencies

• Fix garbage-collecting exclusiviity

2.7.6 0.6.1 (2019-07-21)

• Fix memory leak in lox.process.

2.7.7 0.6.0 (2019-07-21)

• lox.Announcement subscribe() calls now return another Announcement object that behaves like a
queue instead of an actual queue. Allows for many-queue-to-many-queue communications.

• New Object: lox.Funnel. allows for waiting on many queues for a complete set of inputs indicated by a job
ID.

2.7.8 0.5.0 (2019-07-01)

• New Object: lox.Announcement. Allows a one-to-many thread queue with backlog support so that late
subscribers can still get all (or most recent) announcements before they subscribed.

• New Feature: lox.thread scatter calls can now be chained together. scatter now returns an int sub-
class that contains metadata to allow chaining. Each scatter call can have a maximum of 1 previous scatter
result.

• Documentation updates, theming, and logos

2.7.9 0.4.3 (2019-06-24)

• Garbage collect cached decorated object methods

2.7.10 0.4.2 (2019-06-23)

• Fixed multiple instances and successive scatter and gather calls to wrapped methods

2.7. History 13



lox Documentation, Release 0.9.0

2.7.11 0.4.1 (2019-06-23)

• Fixed broken workers and unit tests for workers

2.7.12 0.4.0 (2019-06-22)

• Semi-breaking change: lox.thread and lox.process now automatically pass the object instance when decorating
a method.

2.7.13 0.3.4 (2019-06-20)

• Print traceback in red when a thread crashes

2.7.14 0.3.3 (2019-06-19)

• Fix bug where thread in scatter of lox.thread double releases on empty queue

2.7.15 0.3.2 (2019-06-17)

• Fix manifest for installation from wheel

2.7.16 0.3.1 (2019-06-17)

• Fix package on pypi

2.7.17 0.3.0 (2019-06-01)

• Multiprocessing decorator. lox.pool renamed to lox.thread

• Substantial pytest bug fixes

• Documentation examples

• timeout for RWLock

2.7.18 0.2.1 (2019-05-25)

• Fix IndexSemaphore context manager

2.7.19 0.2.0 (2019-05-24)

• Added QLock

• Documentation syntax fixes

2.7.20 0.1.1 (2019-05-24)

• CICD test

14 Chapter 2. Contents



lox Documentation, Release 0.9.0

2.7.21 0.1.0 (2019-05-24)

• First release on PyPI.

2.7. History 15



lox Documentation, Release 0.9.0

16 Chapter 2. Contents



CHAPTER 3

Indices and tables

• genindex

• modindex

• search

17


	Features
	Contents
	Installation
	lox
	Examples
	FAQ
	Contributing
	Credits
	History

	Indices and tables

